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Wilson loopsexp( i A(x) dx) areinvestigatedin two-dimensionalEuclideanspace—time.
The electromagneticvectorpotential A is regardedas a generalizedrandomfield given by
the stochasticpartial differential equationiJA = F where i) is a first-order differential
operatorand F is white noise.We give a rigorousdefinition of Wilson loops and examine
the propertiesof the N-loop Schwingerfunctions.
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1. Introduction

In analogyto the definition of the electromagneticfield tensor

F,1~= 3~A,,—

Albeverio andHøegh-Krohnsuggesteda model describinginteractingquantum
fields in Euclideanspace—time[2,3]. They considera stochasticpartial differ-
ential equationof the form

= F,

where~)is the first-orderdifferential operator

ó~=~—e1 - k (JXk

and {e1 ed} is the standardbasis of Iv’. The fields A andF areno longer
vector fields, but multicomponentgeneralizedrandomfields.

Albeverio et al. assumethat the generalizedrandomfield F is white noise,in

generalnon-Gaussian,becausethey want A to havethe Markov property. If in
addition A is reflection invariant, one can try to prove Osterwalder—Schrader
positivity, at leaston somesubspaceof thetestfunctionspace,see,e.g., ref. [151

for the two-dimensionalcase.
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The equation9A = F only makes senseif thereis also a multiplication
x ~d

1~dso thatd mustbe in {l, 2,4,8}. A generaloverviewof this model
can be foundin ref. [7].

In the four-dimensionalcasewe havethe noncommutativefield of quater-
nions. If F is Gaussianwhite noise,A is the free electromagneticfield in the
Feynmangauge,whereasthe non-Gaussiancasecorrespondsto someinterac-
tion. The cased = 4 is treatedin refs. [2,3,5,7]. Osipovhas investigatedthe
octonioniccase,seethe referencesin ref. [151.

If d = 2 we havethe field of complexnumbers.The two-dimensionalcase
hasbeenstudiedin refs. [6,8,9,15]. Thereis aconnectionto Yang—Mills theory,
seeref. [12].

In this article, which is devotedto the two-dimensionalcase,we point out
thatWilson ioopsarestochasticcosurfacesin the senseof ref. [4]. We planto
generalizeour resultsto the caseof manifolds.

2. Constructionof the generalizedrandomfield A

Let us first introducethe generalizedrandomfield F. A generalizedrandom
field is acontinuouslinear mapfrom sometest functionspaceT, equippedwith
a topology,into the randomvariableson a fixed probability space (Q,A,P),
i.e.,

F : T —p {R-valuedrandomvariableson (Q,A, P)}

suchthatVA.1,,~.2E l~,Jj, f2 E T,

F(A1f’1 + ).2f2) = )~1F(f1)+ ,~.2F(f2) almostsurely

and
°1I~f =~ F(f~) °-~-~ F(f).

F (f,~)~ F (f) holds, for example,in probability.
We alwaysassumethatthe testfunctionspaceT is avectorspaceover11. If T

is aspaceof functionsl~—~ ll~,F is a scalargeneralizedrandomfield whereas
in the caseof functions11” —* 1~m,F is a multicomponentgeneralizedrandom
field. On the formal level we have

F(f) = f ~X1fj(x) d~x,
~ j=I

where f : l~—* EF~mandX~,j = 1, . .., m, are the componentsof a random
field, i.e. a stochasticprocessindexedby H~.

Let T’ denotethe topologicaldual of T and let (, •) denotethe canonical
pairing betweenT’ and T. Thereis, roughly speaking,a one-to-onecorrespon-
dencebetweengeneralizedrandomfields indexedby T andprobabilitymeasures
on T’. Givenaprobabilitymeasureon T’, f E—* (.,.1) is a generalizedrandom
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field. Conversely,if we canapply Minlos’ theorem (cf. ref. [13]), thecharac-
teristic functionalof the generalizedrandomfield F, f ~ E(eiF(f)), definesa
probabilitymeasureon T’.

Now we introduceF via its characteristicfunctional

~F(f) = E(eiF(f)) = exp(fh(f(x)) d2x), (1)

whereh : —p C is of the form

h(x) = f (e~’~— 1 — i~a,x))dv(a)— Kx,Mx). (2)

~2\{o}

The form (2) is the so-calledKolmogorovcanonicalrepresentation(cf. refs.
[9,14]). Mis apositivedefinite2 x 2-matrix.Themeasurev, the Levy measure,
is assumedto havefinite secondmoments:fR2\{o} ~2 dv (a) < oc. In thepurely
Gaussiancasewe havev = 0.

Note that the specialform of the characteristicfunctional implies that F is
independentat everypoint, i.e., if Ji f2 0 thenF(f1) andF(f2) areindepen-
dent.As a consequenceof the Kolmogorovcanonicalrepresentation(2) —h is a
continuousnegativedefinite function [10] andthe following inequality holds:

h(x)I<M’~xI
2 Vx~2, (3)

whereM is a suitableconstant,seeref. [9].
We assumethatF is indexedby S(~2 C), the spaceof rapidly decreasing

functions ll~2 —* C. Applying Minlos’ theorem,one can show that thereis a
uniqueprobability measure~UFon the dual spaceS’ (ER~,C) such that

~F(f) d~F(~). (4)

Let usnow returnto the equation0A = F. Apart from the operator

a = 0/Oxi —iô/3.v
2,

we alsoconsiderthe operator

= a/ax1 + ia/ax2.
Oneeasily provesthat i~is the exterior derivativeandthat —O is the formal
adjointof a. .~ = a~a~is the Cauchy—Riemannoperator.

Givena functionf E S(l~,C), the equation~9A= F reads

~A(f) =A(-Of) = F(f),

so that
A(f) = A((—~)(—~)‘f)= F((—~Y’f). (5)
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The fundamentalsolution of —3 can be constructedby usingthe fundamental

solution of the two-dimensionalLaplacianandthe identity

a~J= = 4.

We have

2m 2ir 2~rx

It can be shown that the aboveequality does not only hold in the senseof
V’, but even in the senseof S’. We denote the fundamentalsolution of —3
by S(x) := —l/2mx. Using Fourier transformmethods,we get the following
proposition (cf. ref. [9]).

Proposition 2.1.

feS(~2,C) S*fEL~(~2,C)VpE]2,~].

Put

So: S
0(~

2,C):= {f E S(~2,C)~f~
2f(x)d

2x= 0}

andIetfES(l~2,C).WehavefES
0(l~

2,C) ~=t~ S*feL2(~l2,C). E

Becauseof (5) thecharacteristicfunctional of the field A mustbe

~(f) = E(e~) = exp (f h(S*f(x)) d2X). (6)

We assumethat A is indexedby S~becausethe condition J~
2f(x)d

2x = 0
ensuresthat j~

2h (S*f(x) ) d~xexists,cf. inequality (3) andproposition2.1.
Osipov [15] usesa differenttest functionspace,

S0,T = {f E So(~2,C) af1/ax1 + 0f2/0x2 =

to proveOsterwalder—Schraderpositivity for thefield A. Sincethe functionsff,
which we introducein section3, arein SOT we couldalsouseSOT insteadofS0.

AssumingthatA is indexedby S~,Minlos’ theoremyieldsthatthereis a unique
probability measure~tA on S~suchthat

~(f) =Je’~’1~d/LA(~). (7)

Note that the random variables F(f1), fi E S(R
2,C), and A(f

2),f2 E

S0(ff~
2,C), aredefinedon differentprobabilityspaces.

Since in thesequelwe want to write down expressionslike F(1B), where 1B

is the indicator function of a Borel set B, we haveto extendthe operatorF to
a largerspace.It is well known that Gaussianwhite noise can be extendedto
L2, cf. ref. [13]. The following lemmashowsthatsuchan extensioncan alsobe
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constructedin thenon-Gaussiancase,providedonehasa Kolmogorovcanonical
representation(2).

Lemma 2.2.

E(F(f)2) <2M. ~ vf E 5(~2 C),

whereM is the constantin (3).

Let L2(S’,uF) denotethe spaceof randomvariableson S’ that aresquare-
integrablewith respectto PF. Lemma2.2 showsthatF : S(E~2,C) —i L2(5’, /1g)

can be uniquely extendedto a continuousoperator L2(~2,C) —* L2(S’,uF),
which for notationalconveniencewe shallalso denoteby F.

It is easyto prove that the characteristicfunctional of F is given by (1)
and (2) Vf E L2(l~2,C) and that F is still independentat every point, i.e.,
Vf

1,f2 E L
2(f12, C) with the propertyf~f~ 0 the random variablesF(f

1)
andF(f2) are independent.We remarkthat this L

2-extensionalso works if we
havea generalizedrandomfield that hasa characteristicfunctionalof the form
(1) and (2) andthat is indexedby test functions~

As a consequenceof this L2-extensionwe can put A(f) = F(S*f) because
Vf E So we haveS*f E L2.

The following theoremsummarizesthe resultsof this section.

Theorem 2.3.Let fi ~ So(~2,C) and .12 E 5(~2 C) betesifunctions.Wehavetwo

probability spaces(S,~,A
0, ItA) and (5’, A,pp) and can look upon the equation

34 = F in two different ways:
(it) If we put A (.fi) = F (S*f~)the random variablesA (fr) and F (f2) are

definedon the sameprobability space(5’, A, I’F) and 3A (fi) = F(ft) holds
almostsure/v.

(ii~)If we regardA (Jj) asa random variableon (St,A0,PA) A (fi) andF (f2)
are definedon differentprobability spacesand the equationOA (.11) = F (fi)
holdsin law.
Therandom variablesA(f1) : S~—~ ~ and A (fi) : 5’ —~ ~ are equal in law. ~

3. Wilson loops

On the formal level, Wilson loops are exp(ij~’~A(x)dx).Application of
Stokes’ theoremyields ~fcA(x) dx = IBF(x) d

2x, where B is the interior
of the curve C. However, this has to be interpretedcarefully: A(x) is just a
formalexpressionsinceA is ageneralizedrandomfield. Our ideais to construct

asequenceof testfunctionsthat convergesto the deltadistribution on thecurve.
Tamura [17] hascarriedouta similarconstructionin thefour-dimensionalcase.
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We assumethat the curveC is closed,hasonly finitely manyself-intersections

andthat it can beparametrizedby a map that is piecewiseC1. In section5 we
considerthe more generalcaseof curvesthat arenot necessarilyclosed.

We takea function ~ ~ C~(~2R) with thepropertiesço � 0, .J’p~i~p(x) d2x =

1 andsuppç~c [—1,1] x [—1,1]. Let ç~n(x):=n2ço(nx)and

fnC(f~n(Z)~ (8)

It is easily seenthat Vn ~ RJ f~CE C~(l~2,C) and that J~
2f,~(x)d

2x = 0,

i.e., f~’~ so We have f~C°.I11E~ô~in the senseof 5’, where 5~is the delta
distribution on the curve C.

Let
111

nc(x):=—~ dz
2irij z—x

C
denotethe windingnumber.We can provethe pointwiseconvergence

(S*fnC)(x)~(S*~c)(x) =~S(x—z)dz = inc(x) Vx~C. (9)

Theorem 3.1.
Weassumethat thefunctionh in eq. (2) satisfiesthe condition

h(0,x
2)~<K~x2h Vx2Ell~, (10)

whereK>0and~E[0,l[.

If weregardA(f,fl, n e ~, asrandomvariableson (S’,A,PF) thene~’n~
e °~ tnthesenseofL~(S,ug)VpE [l,c[.

— If we regardA (f,[), n e ~, asrandomvariableson (St,A0,PA) thencA (If),

ne~,isaCauchysequenceinLP(S~,p~)VpE[l,~[.
— ThesequenceA (f,[), n E ~, convergesweaklyto F (mc).

Notethat in the last assertionwe do nothaveto specifythe probability spaceon
which theA(f~C),n E r~,are defined.

Sketch of the proof (Details can be found in ref. [9].) Let us first regard
E ~, as randomvariables on (S’,A,UF). It is sufficient to consider

the casep= 2.

—

= !(2~~iF* nd] _exp[_iF(S*fflC_inc)])dpF.

,~~/h(S*f(x)_inc(x))d2x=0 (11)
p

2
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we have

iirnfei1f~_i~~~dpg = 1,

which provesour first assertion.
We use condition (10) to interchangelimit and integral in (11). By (9),

h(0) = Oandthecontinuityofhweget (11).
Let us now prove that ei~~ff~,ne ~, is a Cauchysequencein L”(S~,pA).

Again it is sufficient to considerthe casep = 2. Employingthat ~ n e
is Cauchyin L2(S’,PF) andthat Vf E So A(f) : S~—~ E~andA(f) : 5’ —*

areequalin law, we get for sufficiently largen, m,

— eu1~~
8, = 1(2 — ~ — e

1~ —If)) dp~

= ~e”°~’~— ~

We still haveto provethat A(f~C) ~ F(inc) weakly. Using (9) andthe
continuity of h, we seethe convergenceof the characteristicfunctions

1irnE(e”~’~) = lirnexp (fh(ts*f,~(x))d2x)
p2

= exp(fh(iimts*fnC(x))d2x)

p2

= exp (fh(tinc(xnd2x) =

p2

wherewe employedcondition (10) to interchangelimit andintegral.

It is reasonableto expectthatj~A(x) dx is gaugeinvariant.
If~ is a generalizedrandomfield having the property4x = 8 = 0, we

seethat A + 3,~is also a solution of OA = F. We assumethat x is indexed
by atest function spaceT having the propertyf ~ S~~ Of ~ T anddenote
the correspondingprobability spaceby (T’,A~,p

5).Undertheseassumptions
(A +3x)(f) = 4(f) +x(—af) isa randomvariabledefinedon(S0,A0,JLA)®

(T’, A~,itt).
The Wilson loop is gauge invariant in the sensethat

exP(i~(A+0~)(x)dx) = exp (ifA(x)dx) almostsurely. (12)

A (x) dx, regardedas weak limit of A (f,f~),n E N~,is gaugeinvariant in the
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sensethat

~(A+~~)(x)dx=~A(x)dx inlaw. (13)

Notethat condition (10) excludesthe Gaussiancaseh(x) = —~jx~2.Wejust
give oneexampleof a functionh thathasaKolmogorovcanonicalrepresentation
(2) andsatisfies(10). Other examplescan be found in ref. [9].

Example 3.2.The functionh(x):= exp(—-~x~2)—1 fulfills condition (10) and
hasthe representation

exp(— ~ x 2~— = f (e~”~— 1) do (a)

= f (e~’~— 1 — i(a, x)) do (a),

wherev is the bivariatenormaldistribution.

Let usseehow we canget rid of the restrictivecondition (10). This condition

ensuresthat we can interchangelimit and integral in the proofof theorem3.1.
If the function h doesnot satisfy (10), we can regardthe proofof theorem3.1
as a formal calculationthat motivatesthe following definition.

Definition 3.3.We assumethat the curve C has only finitely many self-inter-
sectionsandthat it can beparametrizedby a mapthat is piecewiseC’. Let nc
denotethewinding number.We definethe Wilson loop by

~A(x)dx:=F(inc). (14)

Weremarkthat theprecedingdefinition dependson thefactthat S*~c= i ~1cE
L2, which is specific for the two-dimensionalcase.

Let usnowhavealookatthedistributionof~~A (x)dx andexp(i ~ A(x)dx).
Sincewe assumethat the curve C hasonly finitely many self-intersections,the
set {nc � 0} has only finitely many connectedcomponentsdenotedby D

1,
I = l,...,mn. We have nc(x) = ‘~i i~,(~)becausethe winding number
is constanton eachD1. Let P~andQc denotethe distributionsof~~A(x)dx
and exp(if~A(x)dx), respectively.Furthermorelet A

2 denotethe Lebesgue
measureon ~2 p( is given by the characteristicfunction

t~E(exp(it~A(x)dx))=exp(~h(init)A2(Di)). (15)
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If C is a simpleclosedcurve andnc = + 1 on the interior B we havethe “area
law”

E(exP(it~A(x)dx)) =exp[h(it)A2(B)]. (16)

The characteristicfunction (x
1,x2) eh i,x2) defines a probability measure

P on H
2 Let IJ~denotethe projection map (x

1,x2) ~ sx2, wheres E Fl. Since
115(P) is infinitely divisible thereis auniquecontinuousconvolutionsemigroup
Ps,r, r > 0, with the propertyP51 = 115(P).P,- is infinitely divisible since

m

Pc = * Pfl,~2(D,). (17)
/=1

Let g : H —~ S’, x ‘—p ~ ~ = g(P~r), r > 0, is a family of continuous
convolutionsemigroupson S’. Qc is an infinitely divisible probability measure

on S
1 whichis given by

m
Qc = * Qfl,~2(jj,). (18)

1=1

Let us makea short remark on the static potential. If C is a rectanglewith
sidesof length R and T, the static potential is definedby

V(R):= -lim ~ lnE(exP (ifA(x)dx)). (19)

We can immediately evaluate (19) by (16): V(R) = —h(i)R. If the Levy
measurev is invariant under the reflection x ~ —x we haveh(x) E H and
—h(x) >0 Vx E H2 Assumingthat h(i) ~ 0, we havelimR_~ V(R) =

which is important in elementaryparticle physics.We refer the readerto ref.
[17] andthe referencesquotedthere.

4. Properties of N-loop Schwinger functions

Thegaugeinvariantexpectationvalues

SN(Cl~...~CN)=E(flexP(i~A(x)dx)) (20)

arecalled N-loop Schwingerfunctions.We haveVt,, . . . , tN E H

E(flexP(itJ~A(x)dx))=exp(fh(i~tjnC.(x))d2x) (21)

u2
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so that

SN(Cl,...,CN) = E(flex~(i~A(x)dx))

= exp(fh(i~ncj(x))d2x). (22)

Let U:= {x E H2\C nc(x) ~ 0} denotethe set spannedby the curve C. If
the sets U

1,..., UN spannedby the curvesC1,...,CN aremutuallydisjoint, the
randomvariables~ 4(x) dx, j E {l,.. . , N}, are independentand

SN(Cl CN) = E(flex~(i~A(x)dx))

= HE(exP(i~Ax)dx)). (23)

Ournext aim is to verify that the N-loop Schwingerfunctionssatisfy the con-
ditionsformulatedby Fröhlich,Osterwalder,andSeiler [16]. Weshallcall these

conditionsFröhlich—Osterwalder—Seileraxioms. In orderto formulatetheseax-
ioms,we haveto equip the set of all curveswith a topology.We distinguishbe-
tweenthenotionof a path y : [a, b] —~ H

2 andthe notion of acurve, anoriented
set C c H2 with y ([a, b]) = C. Let C denotethe set of all closedcurvesthat
arepiecewisedifferentiableand that haveonly finitely many self-intersections.
It canbe provedthat

d(C
1,C2):= infIIyi—y2~I~, (24)

?‘i ,Y2

is a metric on C. The infimum is taken overall paths ~i, Y2 that parametrize
C, and C2, respectively.From now on we assumethat C is equippedwith the
topologyinducedby (24).

We remarkthat wheneverCk ~ C the winding numbersconvergepoint-

wise,nck(x) ~ nC(x) VxEH
2\{CUU~,Ck},andinthesenseofL2(H2)

as well.
Employing lemma2.2, wecan provethat

(Cl,...,CN)~~~A(x)dx (25)
j=1

is continuousin the senseof L~(S’,p~)Vp E [1,2].

(Cl~...~CN)~flexP(i~A(x)dx) (26)
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is continuousin the senseof L~(S’,pF) Vp E [l,cc[ and

(CI~...~CN)~E(flexP(i~A(x)dx)) (27)

is continuous.
Let us point out that Wilson loops can be regarded as noise in the senseof

ref. [1].
We consider a setM anda ring F C P(M), i.e., 0 ~F andif A andB arein

F thenA U B andA \ B arein F, too. Furthermorewe haveaprobability space
(Q,A, P) anda monoidG with unit elemente.

A map~ : F —÷ { G-valuedrandomvariableson (Q, A,P) } is callednoise
if

A,BEF, AflB=O~(A)and~(B)areindependent

and~(AUB) ~(A).~(B),

~(O) ~ e,

where denotesequality in law. ~ is calledcontinuousnoiseif additionally

A0EF, A~~O=t~

Let us takethering F generatedby the boundedsimply connectedBorelsubsets
of H

2. Note thateachelementofF is aboundedBorel set.The mapB ~ F (i 1 B)

is an H-valuednoiseon H2, continuousin the senseof U (5’, !tF) Vp E [1,2].
TheS’-valuednoiseB ~ e’ F (11.9) is continuousin the senseof U (5’, ItF) Vp E

[l,oc[.

Theorem4.1 (Verification of the axioms). The N-loopSchwingerfunctions
SN(C,,... , CN),N ~ ~ satisfyall Fröhlich—Osterwalder—Seileraxioms(cf ref

[16], pp. 164—167).
(FOS 0): Technical assumption.SN : C” —* C is continuous.

Weremarkthatsomeothertechnicalassumptionsare mentionedin ref [16] which

are trivial in our case.
(FOS 1): Symmetry.5N (C,, (1), . . . , Ce(N)) = SN (C

1,. .., C~)for all permu-
tations o~.

(FOS 2): Euclidean invariance.

SN(TCL,...,TCN)=SN(C!,...,CN) VTeH
2®SO(2),

where H2 ® SO (2) is thesemidirectproduct ofH2 and SO(2). If thefunctionh in
(2) is invariant under thereflection (0,x) ~ (0,—x), SN is even invariant under
Fl2® 0(2).

(FOS 3): Osterwalder—Schrader positivity. Weidentifythefirst componentand
the time.Let V bethecomplexvectorspacegeneratedby randomvariablesofthe
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form fJ5” , exp(i ~. A(x) dx), wherewe assumethat the setsU1 spannedby the
curves ~ are mutually disjoint. Note that N is not fixed. Let V~denotethe
subspacespannedby fl~exp(i~f,.A(x)dx), where the sets U~are mutually

disjoint and are in the right halfspaceH~x H. We defIneV.. correspondingly.
Let R be the antilinear map J/+ —~ V. reflectingthe curvesat I = 0 and taking
complexconjugatesofthecoefficients.ThenthefollowingOsterwa/der—Schrader
positivityconditionholds:

E(P. R(P)) >0 VP E V~.

(FOS 4): Clustering. If P ~ V. let pa denotetherandom variable obtainedby
translatingall curvesby a vectora E H

2. Thuswehavea linear map V V, P
pa Thefollowingclusteringconditionholds:

urn E(Q.P’~) = E(Q).E(P) VQ,PEV.
a—’+

Proof (FOS 0) is (27). (FOS 1) is trivial. (21) andthe invarianceproperties
of the Lebesguemeasureyield (FOS 2). VP E V~the randomvariablesP and
R(P) areindependentandE(R(P)) = E(P), which proves(FOS3). (FOS4)
follows from the fact that for sufficiently large x~,Q andP are independent.LI1

(P, Q) : = E(P.R(Q)) obviously is a sesquilinearform on V~.Employingthe
Osterwalder—Schraderpositivity conditionwe seethat (.,.) is positivedefinite
on the physical Hilbert spaceH:= V,./N, where N:= {P E V~ (P,P~= 0}.

Let 1’, : P ~ p~O),wheret > 0, i.e., we translateall curves in positive time
direction. T

1, t > 0, is the semigroupof translationsin time.
It is obviousthat the physical Hilbert spaceis at leastone-dimensional.The

following theoremshowsthat H is exactlyone-dimensional.

Theorem4.2. ThephysicalHilbert spaceH is a one-dimensionalcomplexvector
space.Eachelementofthesemigroupoftranslationsin time is theidentity on H.

Proof We showthat any two vectorsP, Q E H arelinearlydependent.Let Q ~ 0

andlet A E C. Ifwe put A = —E(P)/E(Q) we have

KP + AQ,P + AQ~= (E(P) + AE(Q)). (E(P) + AE(Q)) = 0.

We conclude that H is one-dimensional.Let us fix Q ~ 0. We haveVP e H,

Vt> 0

(T~P,Q) = S1(T1P) .5,(Q) = S1(P) .S1(Q) = (P,Q),

where we employed the invarianceproperty (FOS 2). It follows that T, =

idH Vt>0. LII
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We mention that Wilson loops on a two-dimensional lattice were studied
by Dosch and Muller [11], who proveda factorization lemma analogousto
(23). Becauseof this factorizationlemmathe correspondinglattice Schwinger
functions also satisfy the Fröhlich—Osterwalder—Seileraxiomsand we have a
one-dimensionalHilbert space,too. Thecondition of Euclideaninvariancehas
of courseto be droppedbecausethis is a lattice theory.

5. Wilson loopsregardedasstochasticcosurfaces

In this sectionwe shall point out the connectionbetweenWilson loops and
stochasticcosurfaces.The notion of stochasticcosurfaceswasdevelopedby Al-

beverioandHøegh-Krohnin 1984, cf. ref. [41.
Let usassumethat we havea two-dimensionalrandomfield X~,z E C, i.e.,

a stochasticprocessindexedby C ~ H2. Proceedingformally, we considerthe
mapK: C F—* f~X~dz, which hasthe following properties:

(i) Let —Cdenotethe curve that equalsC as a point set, but with opposite

orientation.Thenwe havealmostsurelyK(—C) = —K(C).
(ii) If wehavetwo curves C, andC

2 suchthat theterminalpoint of C1 is the
initial point of C2, we havealmostsurelyK(C, U C2) = K(C1) + K(C2).

The precedingconsiderationsmotivate the following definition.

Definition 5.1.Let C be a set of curvesin H
2 and let G bea group.

A stochasticcosurfaceis a map

K : C —~ { G-valuedrandomvariableson (Q,A,P) }
with the propertiesthat almost surelyK(—C) = K(C)~ andK(C

1 U C2) =

K(C,) . K(C2) whenevertheterminalpoint of C, equalsthe initial pointof C2.

It is often useful to assumethat G is compactin order to havea finite Haar

measureon G.
We remarkthat the notion of stochasticcosurfacescanbe generalized:H

2 can
be replacedby an orientedRiemannianmanifold M of dimensiond andC can
be replacedby the set of all (d—l )-dimensionalhypersurfacesin M, cf. ref. [4].
However, if d > 2 onehasto assumethat G is abelian.

We usea method presentedin [4] to constructan S’-valuedstochasticcosur-
face.Thiscosurfacewill beageneralizationof theWilsonloopexp(i ~ A (x)dx)
in the sensethatwe also admit curvesC that arenot necessarilyclosedandthat
arenot necessarilycompact.

If wehaveasimpleclosedcurveC with interior B, thelaw ofexp(i j~A (x) dx)
is Q,,,~2(B),where Q,,,,t � 0, is a continuousconvolution semigroupon S’, cf.
eq. (18). We assumethat the probability measuresQ~,

1,I � 0, havedensitiesq,
with respectto the normalizedHaarmeasuredx on S’.
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Let ustaketwo curvesthatarepiecewiseC’ andthat haveonly finitely many
self-intersections.We facethe problemthat thesetwo curves may intersectin-
finitely many times. To excludesuch pathologies,let us first considerstraight
lines connectingpoints of a lattice e~2,e > 0. For brevity we shall call such
straightlines “lattice curves”.We also admit lattice curvesthat arenot compact
andthat arenotclosed,butwe do assumethat thereareonly finitely manypoints
wherethe latticecurvesarenot differentiable.The set of all suchlattice curves
will bedenotedby C~.

Take (C, C,,) C Ce”. (C, C,,) is called “complex” in ref. [4]. If C, n
C

2 ç g~
2for i, ~ i

2 and if the complementof U~, C, is of the form H
2 \

U~,C
1 = u~,B1, where the B1 are simply connected,(C, C,,) is called

“regularsaturatedcomplex”. In thiscasethedistributionof (K (C, ) K (C,,))

is definedby

dP(K(c) K(C~))= ( [Jq~2(~)( fi .v~’)) dx~®... ® d.v,,, (28)
1=1 C,COBJ

wherecr1 = 1 if C1 and3B1 havethe sameorientationand —1 otherwise.We

put q~ I.
If wehavean arbitrarycomplex (C, C,,) we canfind a regularsaturated

complex (C, C,,,), in > n, containing (C, C,,), i.e., VC1 e {C, C,,}
C,, E {C, C,~}suchthat C, = C1, U U C1. We definethe dis-

tribution of (K(C,) K(C,,)) in a naturalway by employingthe property
K(C, U C2) = K(C1) . K(C’.,). Thus we get a projectivesystemof probability
measures.The projective limit is a probability measureon (S’ )c. Employing

the continuity of the convolution semigroupQ,~.t > 0, we get the following
theorem.

Theorem 5.2.Let C he a curve, not necessarilyconnectinglattice points, that is
closed, piecewiseC’, andthat has only finitely manyself-intersections.We can
construct a sequenceK~,n C ~, of lattice cosumfaces and a sequenceof lattice
curves Ce,,n C ~, C~, e Ca Vn,such that C~,“-~-~‘ C in the senseof(24,) and
~ (~‘a) “-~-~ exp(i ~ A(x) dx) weakly.

It is a pleasureto thank S. Albeverio, K. Iwata, and H. Tamura for very
stimulatingdiscussions.
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