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Wilson loops exp (i f A(x)dx) are investigated in two-dimensional Euclidean space-time.
The electromagnetic vector potential 4 is regarded as a generalized random field given by
the stochastic partial differential equation J4 = F where J is a first-order differential
operator and F is white noise. We give a rigorous definition of Wilson loops and examine
the properties of the N-loop Schwinger functions.
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1. Introduction

In analogy to the definition of the electromagnetic field tensor
F,uu = auAu - OuAy 5

Albeverio and Heegh-Krohn suggested a model describing interacting quantum
fields in Euclidean space-time [2,3]. They consider a stochastic partial differ-
ential equation of the form

04 =F,
where 9 is the first-order differential operator
d
0 o
0= —e — —e
Jxy ! 1(2::2 dxy k
and {e,,...,ey} is the standard basis of R?. The fields A4 and F are no longer

vector fields, but multicomponent generalized random fields.

Albeverio et al. assume that the generalized random field F is white noise, in
general non-Gaussian, because they want 4 to have the Markov property. If in
addition 4 is reflection invariant, one can try to prove Osterwalder-Schrader
positivity, at least on some subspace of the test function space, see, e.g., ref. [15]
for the two-dimensional case.
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The equation 4 = F only makes sense if there is also a multiplication
R? x B¢ — R 5o that 4 must be in {1,2,4, 8}. A general overview of this model
can be found in ref. [7].

In the four-dimensional case we have the noncommutative field of quater-
nions. If F is Gaussian white noise, 4 is the free electromagnetic field in the
Feynman gauge, whereas the non-Gaussian case corresponds to some interac-
tion. The case d = 4 is treated in refs. {2,3,5,7]. Osipov has investigated the
octonionic case, see the references in ref. [15].

If d = 2 we have the field of complex numbers. The two-dimensional case
has been studied in refs. [6,8,9,15]. There is a connection to Yang-Mills theory,
see ref. [12].

In this article, which is devoted to the two-dimensional case, we point out
that Wilson loops are stochastic cosurfaces in the sense of ref. [4]. We plan to
generalize our results to the case of manifolds.

2. Construction of the generalized random field 4

Let us first introduce the generalized random field F. A generalized random
field is a continuous linear map from some test function space T, equipped with
a topology, into the random variables on a fixed probability space (2, A, P),
1e.,

F : T — {R-valued random variables on (£, 4, P)}

such that VA, , eR, f}, L€ T,
Ffi +22) = WF(fi) + A2F (f2)  almost surely

and
= s F() =5 R,
F(f,) =2 F(f) holds, for example, in probability.

We always assume that the test function space T is a vector space over R. If T
is a space of functions R* — R, F is a scalar generalized random field whereas
in the case of functions R” — R"™, F is a multicomponent generalized random
field. On the formal level we have

m
F(f) = /ZX,—fj(x) d"x,
fr j=1
where f : R” — R™ and X;, j = 1,...,m, are the components of a random
field, 1.e. a stochastic process indexed by R™.

Let 7' denote the topological dual of T and let (-, -) denote the canonical
pairing between 77 and T. There is, roughly speaking, a one-to-one correspon-
dence between generalized random fields indexed by T  and probability measures
on 7’. Given a probability measure on 77, /' +— (-, f) is a generalized random
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field. Conversely, if we can apply Minlos’ theorem (cf. ref. [13]), the charac-
teristic functional of the generalized random field F, f — E (eiF u 1), defines a
probability measure on 77,

Now we introduce F via its characteristic functional

D (f) = E(eFY)) =exp</h(f<x>)d2x), (1)
RZ
where 4 : R2 — C is of the form
h(x) = / (e — 1~ ifa,x) )dv () — (x, Mx). (2)
R2\ {0}

The form (2) is the so-called Kolmogorov canonical representation (cf. refs.
[9,14]). M is a positive definite 2 x 2-matrix. The measure v, the Lévy measure,
is assumed to have finite second moments: fRz\ 0 |a|? dv (a) < oc. In the purely
Gaussian case we have v = 0.

Note that the special form of the characteristic functional implies that F is
independent at every point, i.e., if f; - f, = 0 then F (f}) and F (f;) are indepen-
dent. As a consequence of the Kolmogorov canonical representation (2) —h is a
continuous negative definite function [10] and the following inequality holds:

|h(x)| < M- |x|*> VxeR?, (3)

where M is a suitable constant, see ref. [9].

We assume that F is indexed by S(RZ, C), the space of rapidly decreasing
functions R? — C. Applying Minlos’ theorem, one can show that there is a
unique probability measure ur on the dual space S’ (R?, C) such that

() = [0 dup (@) )
5
Let us now return to the equation 34 = F. Apart from the operator
0 =0/0x—10/0x,,
we also consider the operator
8 =0/0x; +10/9x,.

One easily proves that id is the exterior derivative and that —9 is the formal
adjoint of 4. %5 = 8/8z is the Cauchy-Riemann operator.
Given a function f € S(RZ2, C), the equation 84 = F reads
QA(Sf) = A(-9f) = F(f),
so that
A(f) = A((-9) (-0)'f) = F((-9)7' /). (5)
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The fundamental solution of —9 can be constructed by using the fundamental
solution of the two-dimensional Laplacian and the identity

00 =09 = 4.
We have
1 — 1 — 1
grinlxl) = 005 ) = -9(- 55 ).
It can be shown that the above equality does not only hold in the sense of
D', but even in the sense of S’. We denote the fundamental solution of —9

by S(x) := —1/2rnx. Using Fourier transform methods, we get the following
proposition (cf. ref. [9]).

5:A( In

Proposition 2.1.
fESRLC) = SxfelP(RC) Ypel2 x].
Put
So:= SR, C):= {f € SR C)| [, f(x) d%x = 0}
and let f € S(R%, C). We have f € So(R?, C) <= Sxf € L2(R%, C). O

Because of (5) the characteristic functional of the field 4 must be

@4(f) = E(V)) = exp </h(5*f(x)) dz*‘)- (6)
RZ

We assume that 4 is indexed by Sy because the condition f,, f(x) d’x = 0
ensures that fRz h(Sxf(x)) d%x exists, cf. inequality (3) and proposition 2.1.
Osipov [15] uses a different test function space,

Sor = {/ €S8R C)|8/1/0x1 + 0 /0x; = 0},

to prove Osterwalder—-Schrader positivity for the field 4. Since the functions f,,
which we introduce in section 3, are in Sy r we could also use Sy 7 instead of S;.

Assuming that A is indexed by Sy, Minlos’ theorem yields that there is a unique
probability measure x4 on S; such that

G4(f) = /ei‘f’f) dua (). (7)
5

Note that the random variables F(f;), fi € S(R% C), and A(f:),f» €
So(R%, C), are defined on different probability spaces.

Since 1n the sequel we want to write down expressions like F (1g), where 1
1s the indicator function of a Borel set B, we have to extend the operator F to
a larger space. It is well known that Gaussian white noise can be extended to
L?, cf. ref. [13]. The following lemma shows that such an extension can also be
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constructed in the non-Gaussian case, provided one has a Kolmogorov canonical
representation (2).

Lemma 2.2.
E(F(NH?) <2M-||f|5 v/ eSE®, 0,

where M is the constant in (3). O

Let L2(S’, ur) denote the space of random variables on &’ that are square-
integrable with respect to xr. Lemma 2.2 shows that F : S(R?, C) — L*(S', ur)
can be uniquely extended to a continuous operator L2(R?, C) — L*(S’, ur),
which for notational convenience we shall also denote by F.

It is easy to prove that the characteristic functional of F is given by (1)
and (2) Vf € L2(R2, C) and that F is still independent at every point, i.e.,
V1. f» € L?(R?, C) with the property f; - f» = 0 the random variables F (f})
and F (f>) are independent. We remark that this L2-extension also works if we
have a generalized random field that has a characteristic functional of the form
(1) and (2) and that is indexed by test functions R” — R™.

As a consequence of this L?-extension we can put A(f) = F(S*f) because
Vf eS8, we have S« f € L2,

The following theorem summarizes the results of this section.

Theorem 2.3. Let f; € So(R?, C) and f> € S(R?, C) betest functions. We have two
probability spaces (S, Ao, i) and (S', A, up) and can look upon the equation
04 = F in two different ways:

() If we put A(f,) = F (S« /1) the random variables A(f\) and F (f5) are
defined on the same probability space (S', A, ur) and 0A(f1) = F(f1) holds
almost surely.

(ii) If we regard A( f1) as a random variable on (S|, Ao, 1u4), A(f1) and F (f3)
are defined on different probability spaces and the equation OA(f)) = F{f})
holds in law.

The random variables A(fy) : Sy — Rand A(f;) : 8" — Rare equal in law. O

3. Wilson loops

On the formal level, Wilson loops are exp(ifCA(x)dx). Application of
Stokes’ theorem yields §-A(x) dx = [, F(x) d’x, where B is the interior
of the curve C. However, this has to be interpreted carefully: A(x) is just a
formal expression since A is a generalized random field. Our idea is to construct
a sequence of test functions that converges to the delta distribution on the curve.
Tamura [17] has carried out a similar construction in the four-dimensional case.
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We assume that the curve C is closed, has only finitely many self-intersections
and that it can be parametrized by a map that is piecewise C!. In section 5 we
consider the more general case of curves that are not necessarily closed.

We take a function ¢ € C§° (R?, R) with the properties ¢ > 0, [, ¢ (x) d%x =
landsuppp C[-1,1] x [-1,1]. Let p,,(x):= nz(p(nx) and

£C(x) = fqon(x—nd:. (8)
C

It is easily seen that Vn €N £,¢ € C&°(R2, C) and that [, /,¢(x) d’°x = 0,
ie., £,€ € Sy. We have £, "=3 §¢ in the sense of S, where J¢ is the delta
distribution on the curve C.

Let
n (’C)'— %1 dz
C=moni ) - x

c
denote the winding number. We can prove the pointwise convergence

(S*£5) (x) =5 (S#d¢) (x) = fS(x—z)dz =inc(x) vx¢C. (9)
C

Theorem 3.1.
We assume that the function h in eq. (2) satisfies the condition
h(0.x2)| < K- |x*  Vxy€R, (10)
where K > 0and { € [0, 1]. ‘
- Ifweregard A(S,C), n €N, as random variables on (S', A, ur) then REIA
"5 eif ine) iy the sense of LP(S', up) Vp € [1,x] . ‘
- Ifweregard A(f,L), n € N, as random variables on (S}, Ay, u.1) then iU
n €N, is a Cauchy sequence in LP (Sj, 1tq) Vp € [1,x[.
- The sequence A(f,L), n € N, converges weakly to F (in¢).
Note that in the last assertion we do not have to specify the probability space on
which the A(f,£), n €N, are defined.

Sketch of the proof- (Details can be found in ref. [9].) Let us first regard
A(S,E), n € N, as random variables on (S8, A, ur). It is sufficient to consider
the case p = 2.

Hem(/f) _ eiF(i”")Hi

- /(2—exp[iF(S*fnC —inc)] - exp[-iF (S« £;C —inc)])dur.
d
If
Jlim h(S* f(x)—inc(x)) d*x =0 (1)

R2
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we have

lim eiF(S*fnCvinC) d,uF — 1,
n OCS’
which proves our first assertion.

We use condition (10) to interchange limit and integral in (11). By (9),
#(0) = 0 and the continuity of # we get (11).

Let us now prove that eUa) n € N, is a Cauchy sequence in L7 (S}, i4).
Again it is sufficient to consider the case p = 2. Employing that e ) peN,
is Cauchy in L2(S’,ur) and that Vf € Sop A(f) : S —=Rand A(f) : &' = R
are equal in law, we get for sufficiently large n, m,

e > [|eH) — eUD|E = /(2 MU _ AU S dup
, /
40 FC CarCy 2
= e i

n—oc

We still have to prove that A(f,S) = F(inc) weakly. Using (9) and the
continuity of /4, we see the convergence of the characteristic functions

n—oc

lim E(e“)) = lim exp (/h(tS*f,,C(x))dZX>
R2

exp (/h(JLrQCzS*fnC(,Y))dZ,x>
R2

exp (/h(zinc(x))dzx) = E(el'Flnc)y,
R2
where we employed condition (10) to interchange limit and integral. O

It is reasonable to expect that fc A(x) dx is gauge invariant.

If x is a generalized random field having the property 4y = 80y = 0, we
see that 4 + Jyx is also a solution of 94 = F. We assume that y is indexed
by a test function space 7 having the property f € Sg = 6 f € T and denote
the corresponding probability space by (77, A,, 1, ). Under these assumptions
(A+9x)(f) = A(S)+x (=0 /) isarandom variable defined on (Sy, Ag, 1 .4)®
(T, Ay, 1ty).

The Wilson loop is gauge invariant in the sense that

exp (i}l{(A + 0x)(x) dx) = exp (i fA(x) dx) almost surely. (12)
C C

fCA(x) dx, regarded as weak limit of A(fnC), n € N, is gauge invariant in the
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sense that _
?{(A+5x)(x)dx= %A(x)dx in law. (13)

C C
Note that condition (10) excludes the Gaussian case 2(x) = —%|x12. We just

give one example of a function 4 that has a Kolmogorov canonical representation
(2) and satisfies (10). Other examples can be found in ref. [9].

Example 3.2. The function A2 (x):= exp(—%|x|2) — 1 fulfills condition (10) and
has the representation

CXD(—% X|2) -1 = / (ei<”’x> — 1) dv ()
R\ {0}

= / (e — 1 — i, x)) dv (),
R2\{0}

where v is the bivariate normal distribution.

Let us see how we can get rid of the restrictive condition (10). This condition
ensures that we can interchange limit and integral in the proof of theorem 3.1.
If the function /4 does not satisfy (10), we can regard the proof of theorem 3.1
as a formal calculation that motivates the following definition.

Definition 3.3. We assume that the curve C has only finitely many self-inter-
sections and that it can be parametrized by a map that is piecewise C'!. Let n¢
denote the winding number. We define the Wilson loop by

fA(x)dx::F(inC). (14)

C

We remark that the preceding definition depends on the fact that Sxd¢c = in¢ €
L?, which is specific for the two-dimensional case.

Let us now have alook at the distribution of §- A (x)dx andexp(i . 4 (x)dx).
Since we assume that the curve C has only finitely many self-intersections, the
set {nc # 0} has only finitely many connected components denoted by Dy,
[ =1,...,m. We have nc(x) = Z,m:l n; 1p,(x) because the winding number
is constant on each D;. Let Pc and Q¢ denote the distributions of §. A(x) dx
and exp(i §- A(x)dx), respectively. Furthermore let 12 denote the Lebesgue
measure on R2. P is given by the characteristic function

t— E(exp (izfA(x)dx» = exp <Zh(in,z)/12(D,)). (15)
C =1
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If C is a simple closed curve and nc = + 1 on the interior B we have the “area
law”

E<exp (iz}{A(x)dx)) =exp[h(it)A*(B)]. (16)
C

The characteristic function (x, x3) — e?*1%2) defines a probability measure
P on R2. Let JI; denote the projection map (x),x2) — sx», where s € R. Since
11 (P) is infinitely divisible there is a unique continuous convolution semigroup
P r, r > 0, with the property Py, = II,(P). P¢ is infinitely divisible since

m
PC = * Pn/,/lZ(D/)’ (17)
=1

Let g : R — S, x e Q, = g(P,), r >0, is a family of continuous
convolution semigroups on S!. Q¢ is an infinitely divisible probability measure

on S' which is given by
m

Qc = * Q12 - (18)
=1

Let us make a short remark on the static potential. If C is a rectangle with
sides of length R and T, the static potential is defined by

V(R)::—Tlim % lnE(exp (i%A(x)dx)). (19)
C
We can immediately evaluate (19) by (16): V(R) = —h(i)R. If the Lévy

measure v is invariant under the reflection x — —x we have #(x) € R and
—h(x) >0 Vx € R%. Assuming that /4 (i) # 0, we have limg— . V(R) = +x,
which i1s important in elementary particle physics. We refer the reader to ref.
[17] and the references quoted there.

4. Properties of N-loop Schwinger functions

The gauge invariant expectation values
N
SN(CI,...,CN)=E<Hexp<ij§/4(x)dx>> (20)
Jj=1 e
are called N-loop Schwinger functions. We have v¢,..., /Iy €R

N N
E(Hexp (iz,-fA(x)dx> ) = exp(/h(ithncj(x)>d2x) (21)
j=1 R? j=1

G
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so that

Sv(Cy,...,Cn)

E(jli[lexp (ifA(x)dx) )

G

N
exp(/h(iZnC,(x))d2x>. (22)
R2 j=1

Let U:= {x e R?\ C| n¢(x) # 0} denote the set spanned by the curve C. If

the sets Uy, ..., Uy spanned by the curves Ci, ..., Cy are mutually disjoint, the
random variables ij_ A(x)dx, je{1,..., N}, are independent and
N
Sy(C,...,Cn) = E(H exp (i;éA(x)dx))
j=1 &

N i
HE(exp (i%A(x)dx)). (23)
Jj=1 e

Our next aim is to verify that the N-loop Schwinger functions satisfy the con-
ditions formulated by Frohlich, Osterwalder, and Seiler [16]. We shall call these
conditions Frohlich-Osterwalder—Seiler axioms. In order to formulate these ax-
ioms, we have to equip the set of all curves with a topology. We distinguish be-
tween the notion of a path y : [a, b] — R? and the notion of a curve, an oriented
set C C R? with y([a,b]) = C. Let C denote the set of all closed curves that
are piecewise differentiable and that have only finitely many self-intersections.
It can be proved that

d(C,Cy):= inf|ly; — 72l (24)
Y1.72

is a metric on C. The infimum 1s taken over all paths p,, y, that parametrize
C, and (,, respectively. From now on we assume that C is equipped with the
topology induced by (24).

We remark that whenever Cy k2% C the winding numbers converge point-
wise, ng, (x) 2% ne(x) vxe R2\ {CUUr~, Cx}, and in the sense of L2 (R?)
as well.

Employing lemma 2.2, we can prove that

N
(Cl,...,CN)r—»Z j[A(x)dx (25)
i=lg,

is continuous in the sense of LP(S', ur) Vp € [1,2].

N
(CI,...,CN)+——>Hexp(i%A(x)dx) (26)

j=1 Z
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is continuous in the sense of L?(S’, ur) Vp € [1,oc[ and

N
(Cl,...,CN)n——»E(Hexp(i%A(x)dx)) (27)

Jj=1 C;
is continuous.

Let us point out that Wilson loops can be regarded as noise in the sense of
ref. [1].

We consider a set M and aring F C P(M), i.e,, B € F and if 4 and B are in
F then AU B and 4\ B are in F, too. Furthermore we have a probability space
(2, A, P) and a monoid G with unit element e.

Amapé : F — { G-valued random variables on (2, A, P) } is called noise
if

A,BcF, ANB =0 = &(A) and (B) are independent
and (AU B) £ &(A)-&(B),
E@) = e,
where £ denotes equality in law. & is called continuous noise if additionally
AnEJ:, Anlﬂ = é(An)‘“‘é(Q)

Let us take the ring F generated by the bounded simply connected Borel subsets
of R?. Note that each element of  is a bounded Borel set. The map B — F (ilg)
is an R-valued noise on RZ, continuous in the sense of L? (S’, ur) Vp € [1,2].
The S!-valued noise B ~— e £ (i15) s continuous in the sense of L (S’, ur) Vp €
[1,0c].

Theorem 4.1 (Verification of the axioms). The N-loop Schwinger functions
Snv(Cy,...,Cn), N €N, satisfy all Frohlich-Osterwalder-Seiler axioms (cf. ref.
[16], pp. 164-167).

(FOS 0): Technical assumption. Sy : CY — C is continuous. ‘
We remark that some other technical assumptions are mentioned in ref. [16] which
are trivial in our case.

(FOS 1): Symmetry. Sy (Cy(1),---, Cony) = Sny(Ci,...,Cn) for all permu-
tations .

(FOS 2): Euclidean invariance.

SN(TC,,...,TCy) = SN(C|,...,Cy) VT eR2®SO(2),

where R? @ SO(2) is the semidirect product of R? and SO(2). If the function h in
(2) is invariant under the reflection (0, x) — (0, —x), Sy is even invariant under
R2® O(2).

(FOS 3): Osterwalder-Schrader positivity. We identify the first component and
the time. Let V be the complex vector space generated by random variables of the
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form Hf’:l exp (1 §C, A(x)dx), where we assume that the sets U; spanned by the
curves C; are mutually disjoint. Note that N is not fixed. Let V., denote the
subspace spanned by Hj-vzl exp (i fq A(x)dx), where the sets U; are mutually
disjoint and are in the right half-space R, x R. We define V_ correspondingly.
Let R be the antilinear map V, — V_ reflecting the curves at t = 0 and taking
complex conjugates of the coefficients. Then the following Osterwalder-Schrader
positivity condition holds:

E(P-R(P))>0 VPeV,.

(FOS 4): Clustering. If P € V', let P? denote the random variable obrained by
translating all curves by a vector a € R%. Thus we have a linear map V- — V, P
Pa. The following clustering condition holds:

lim FE(Q-P% = E(Q) -E(P) VO, Pel .

la|— +oc

Proof. (FOS 0) is (27). (FOS 1) is trivial. (21) and the invariance properties
of the Lebesgue measure yield (FOS 2). VP € V, the random variables P and
R(P) are independent and E(R(P)) = E(P), which proves (FOS 3). (FOS 4)
follows from the fact that for sufficiently large | x|, @ and P are independent.[]

(P,Q) := E(P-R(Q)) obviously is a sesquilinear form on V, . Employing the
Osterwalder—Schrader positivity condition we see that (-,-) is positive definite
on the physical Hilbert space H:= V. /N, where N:= {P € V, | (P,P) = 0}.

Let 7; : P — PWO where ¢ > 0, i.e., we translate all curves in positive time
direction. 7;, t > 0, is the semigroup of translations in time.

It is obvious that the physical Hilbert space 1s at least one-dimensional. The
following theorem shows that H is exactly one-dimensional.

Theorem 4.2. The physical Hilbert space H is a one-dimensional complex vector
space. Each element of the semigroup of translations in time is the identity on H.

Proof. We show that any two vectors P, Q € H are linearly dependent. Let Q # 0
andletAe C.Ifweputd = —E(P)/E(Q) we have

(P+AQ,P +40) = (E(P) + AE(Q)) - (E(P) + 2E(Q)) = 0.

We conclude that H is one-dimensional. Let us fix Q # 0. We have VP € f,
vt >0

(TP, Q) = SI(T,P) - $1(Q) = Si1(P)-$1(Q) = (P,Q),

where we employed the invariance property (FOS 2). It follows that 7, =
idy vi>0. O
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We mention that Wilson loops on a two-dimensional lattice were studied
by Dosch and Miiller [11], who proved a factorization lemma analogous to
(23). Because of this factorization lemma the corresponding lattice Schwinger
functions also satisfy the Frohlich-Osterwalder—Seiler axioms and we have a
one-dimensional Hilbert space, too. The condition of Euclidean invariance has
of course to be dropped because this is a lattice theory.

5. Wilson loops regarded as stochastic cosurfaces

In this section we shall point out the connection between Wilson loops and
stochastic cosurfaces. The notion of stochastic cosurfaces was developed by Al-
beverio and Haegh-Krohn in 1984, cf. ref. [4].

Let us assume that we have a two-dimensional random field X,z € C, i.e.,
a stochastic process indexed by C = R2. Proceeding formally, we consider the
map K:Cw— fc X:dz, which has the following properties:

(1) Let —C denote the curve that equals C as a point set, but with opposite
orientation. Then we have almost surely K (-C) = ~K(C).

(i1) If we have two curves C; and 5 such that the terminal point of C, is the
initial point of C,, we have almost surely K (C, U ;) = K(Cy) + K(C3).

The preceding considerations motivate the following definition.

Definition 5.1. Let C be a set of curves in R and let G be a group.
A stochastic cosurface is a map

K : ¢ — { G-valued random variables on (2, 4, P) }

with the properties that almost surely K(—C) = K(C) ' and K(C; U C,) =
K(C,) - K(Cy) whenever the terminal point of C; equals the initial point of C;.

It is often useful to assume that G is compact in order to have a finite Haar
measure on G.

We remark that the notion of stochastic cosurfaces can be generalized: R? can
be replaced by an oriented Riemannian manifold A of dimension d and C can
be replaced by the set of all (d—1)-dimensional hypersurfaces in M, cf. ref. [4].
However, if d > 2 one has to assume that G is abelian.

We use a method presented in [4] to construct an S!-valued stochastic cosur-
face. This cosurface will be a generalization of the Wilson loop exp (i §. 4 (x )dx)
in the sense that we also admit curves C that are not necessarily closed and that
are not necessarily compact.

If we have a stmple closed curve C with interior B, the law of exp (i fc A(x)dx)
is Q) ;2(p), where Q,,,t > 0, is a continuous convolution semigroup on S!, cf.
eq. (18). We assume that the probability measures Q) ,, 7 > 0, have densities g,
with respect to the normalized Haar measure dx on S!.
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Let us take two curves that are piecewise C'! and that have only finitely many
self-intersections. We face the problem that these two curves may intersect in-
finitely many times. To exclude such pathologies, let us first consider straight
lines connecting points of a lattice ¢Z%,¢ > 0. For brevity we shall call such
straight lines “lattice curves™. We also admit lattice curves that are not compact
and that are not closed, but we do assume that there are only finitely many points
where the lattice curves are not differentiable. The set of all such lattice curves
will be denoted by C..

Take (Cy,....Cy) €} (Cy,...,Cy) is called “complex™ in ref. [4]. If C; N
C;, C e7* for iy # i and if the complement of |J/_, C; is of the form R?\
U:’:l C; = Ule B;, where the B; are stmply connected, (C,..., () is called
“regular saturated complex”. In this case the distribution of (K (Cy), ..., K(Cy))
1s defined by

k
dPk (). k() = (H 432(8,) ( [T ™ )> dy; @ mdy,,  (28)
j=1

C,CoB,

where o;; = 1 if C; and 0 B; have the same orientation and —1 otherwise. We
put g.. = 1.

If we have an arbitrary complex ((,..., C;) we can find a regular saturated
complex (Cy,....Cp). m > n, containing (Cy,....Cy), 1.c., VG € {C),....Cy}
3(:/1 ..... (:,, € {f‘l,...,dn} such that C; = C/l U---u (:,r. We define the dis-
tribution of (K (Cy),...,K(Cy,)) in a natural way by employing the property
K(C,uUGy) = K(Cy) - K((,). Thus we get a projective system of probability
measures. The projective limit is a probability measure on (S')%. Employing
the continuity of the convolution semigroup Q,,t > 0, we get the following
theorem,

Theorem 5.2. Let C be a curve, not necessarily connecting lattice points, that is
closed, piecewise C', and that has only finitely many self-intersections. We can
construct a sequence K,,,n € N, of lattice cosurfaces and a sequence of lattice
curves Cp,,n € N, C, € Ce, Vn, such that C, "X C in the sense of (24) and
K;, (Ce,) =5 expli §- A(x) dx) weakly.

It is a pleasure to thank S. Albeverio, K. Iwata, and H. Tamura for very
stimulating discussions.
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